
A Comparison of Buffer Overflow
Prevention Implementations and Their

Weaknesses

Richard Johnson | Peter Silberman

Agenda

– Compiler-Enforced Protection
• StackGuard
• StackShield
• ProPolice
• Microsoft /GS Compiler Flag

– Kernel-Enforced Protection
• PaX
• StackDefender 1 & 2
• OverflowGuard

– Attack Vector Test Platform

Compiler-Enforced Protection

Compiler-Enforced Approach

• Advantages
– No system-wide performance impact
– Intimate knowledge of binary structure

• Disadvantages
– Requires modification of each protected binary (including

shared libraries) and source code must be available
– Protections must account for each attack vector since

execution environment is not protected

Compiler-Enforced Concepts

• Buffer Overflow Prevention is accomplished by
protecting control data stored on the stack.

• Re-ordering Stack Variable Storage

• Stack Canaries
– Random Canary
– Random XOR Canary
– Null Canary
– Terminator Canary

StackGuard

• Pioneered the use of stack canaries.

• Modifications to the function_prologue and
function_epilogue generate and validate
canaries.

• Canary originally adjacent to return address.

• Latest version protects both return address and
frame pointer.

• Canary location is now architecture specific.

StackShield

• Global Ret Stack
– Return address is placed in the Global Ret Stack whenever a

function is called and copied out whenever the function
returns.

• Ret Range Check
– Copies return address to non-writable memory in

function_prologue
– function_epilogue checks against stored return address to

detect an overflow.

• Function pointers are also checked to ensure
they point to the .text section.

ProPolice SSP

• Implements a safe stack model which
rearranges argument locations, return
addresses, previous frame pointers and local
variables.

• Provides most complete buffer overflow
prevention solution of all evaluated compiler-
enforced protection software.

ProPolice SSP

• Arrays and local variables are all below the return
address.

ProPolice SSP

• Vulnerable code segment (provided by ProPolice docs):

• In our example, an overflow in buf could overwrite the
function pointers. However, SSP will change this code
to….

ProPolice SSP

Using the ProPolice safe stack, the passed function
pointer is put in a register or local variable by the
compiler.

Microsoft Compiler Extension

• Initial release of Microsoft’s .NET compiler
included buffer overflow protection

• .NET compiler protection is a re-incarnation of
Crispin Cowan’s StackGuard

• Differences
– Cookies vs. Canaries
– Storing in Writable Memory

How the /GS Switch Works

• The GS switch adds a security cookie

• When the cookie check occurs:
– Original cookie stored in .data section
– Compared to the cookie on the stack
– No match security handler called

• Modifications to Exception Handler
– Can’t point to stack
– Registered Handler

Buffer

Cookie

Saved EBP

Saved Return Address

Param *

Param *

.NET Protection Bypass

• Exception Handler Bypass
– Exception handler points to heap
– Exception handler points to registered handler

• If the attacker has an arbitrary DWORD
overwrite
– Overwrite the saved cookie
– Overwrite the security handler function pointer

Kernel-Enforced Protection

Kernel-Enforced Approach

• Advantages
– Does not require source code or modifications to binaries
– Kernel has control over the MMU

• Disadvantages
– Architecture/platform dependant
– Noticeable performance impact on architectures that don’t

natively support non-executable features

Kernel-Enforced Concepts

• Buffer Overflow Prevention is accomplished by
applying access controls to the MMU and
randomizing process memory layout.

• The goal of kernel-enforced buffer overflow
protection is to prevent and contain the
following:
– Introduction/execution of arbitrary code
– Execution of existing code out of original program order
– Execution of existing code in original program order with

arbitrary data

Memory Management Unit Access Control Lists

• Non-executable (NOEXEC) protection is the
most commonly used access control for
memory.

• A non-executable stack resides on a system
where the kernel is enforcing proper “memory
semantics.”
– Separation of readable and writable pages
– All executable memory including the stack, heap and all

anonymous mappings must be non-executable.
– Deny the conversion of executable memory to non-executable

memory and vice versa.

Address Space Layout Randomization

• Defeats rudimentary exploit techniques by
introducing randomness into the virtual
memory layout of a process.

• Binary mapping, dynamic library linking and
stack memory regions are all randomized
before the process begins executing.

PaX

• PaX Project’s kernel patches provide an
example of one of the more robust kernel-
based protection software currently available.

• PaX offers prevention against unwarranted
code execution via memory management
access controls and address space
randomization.

PaX NOEXEC

• NOEXEC aims to prevent execution of arbitrary
code in an existing process’s memory space.

• Three features which ultimately apply access
controls on mapped pages of memory:
– executable semantics are applied to memory pages
– stack, heap, anonymous memory mappings and any section

not marked as executable in an ELF file is non-executable by
default.

– ACLs on mmap() and mprotect() prevent the conversion of the
default memory states to an insecure state during execution
(MPROTECT).

PaX PAGEEXEC

• Implementation of non-executable memory
pages that is derived from the paging logic of
IA-32 processors.

• Pages may be marked as “non-present” or
“supervisor level access”.

• Page fault handler determines if the page fault
occurred on a data access or instruction fetch.
– Instruction fetch – log and terminate process
– Data access – unprotect temporarily and continue

PaX SEGMEXEC

• Derived from the IA-32 processor segmentation
logic

• Linux runs in protected mode with paging enabled
on IA-32 processors, which means that each
address translation requires a two step process.
– LOGICAL <-> LINEAR <-> PHYSICAL

• The 3gb of userland memory space is divided in
half:
– Data Segment: 0x00000000 - 0x5fffffff
– Code Segment: 0x60000000 – 0xbfffffff

• Page fault is generated if instruction fetches are
initiated in the non-executable pages.

PaX MPROTECT

• Prevents the introduction of new executable
code to a given task’s address space.

• Objective of the access controls is to prevent:
– Creation of executable anonymous mappings
– Creation of executable/writable file mappings
– Making executable/read-only file mapping writable except for

performing relocations on an ET_DYN ELF
– Conversion of non-executable mapping to executable

PaX MPROTECT

• Every memory mapping has permission
attributes which are stored in the vm_flags field
of the vma structure within the Linux kernel.

• The four attributes which define the
permissions of a particular area of mapped
memory are:
– VM_WRITE
– VM_EXEC
– VM_MAYWRITE
– VM_MAYEXEC

PaX MPROTECT

• The Linux kernel requires VM_WRITE enabled if
the VM_MAYWRITE attribute is true. Also
applies to VM_EXEC.

• PaX must deny WRITE and EXEC permissions on
the same page leaving the safe states to be:
 VM_MAYWRITE
 VM_MAYEXEC
 VM_WRITE | VM_MAYWRITE
 VM_EXEC | VM_MAYEXEC

PaX ASLR

• Address Space Layout Randomization (ASLR)
renders exploits which depend on
predetermined memory addresses useless by
randomizing the layout of the virtual memory
address space.

• PaX implementation of ASLR consists of:
– RANDUSTACK
– RANDKSTACK
– RANDMMAP
– RANDEXEC

PaX RANDUSTACK

• Responsible for randomizing userspace stack.

• Kernel creates program stack upon each
execve() system call.
– Allocate appropriate number of pages
– Map pages to process’s virtual address space

• Userland stack usually is mapped at 0xbfffffff

• Randomization is added both in the address
range of kernel memory to allocate and the
address at which the stack is mapped.

PaX RANDKSTACK

• Responsible for randomizing a task’s kernel
stack

• Each task is assigned two pages of kernel
memory to be used during the execution of
system calls, interrupts, and exceptions.

• Each system call is protected because the
kernel stack pointer will be at the point of initial
entry when the kernel returns to userspace

PaX RANDMMAP

• Handles the randomization of all file and
anonymous memory mappings.

• Linux usually allocates heap space by
beginning at the base of a task's unmapped
memory and locating the nearest chunk of
unallocated space which is large enough.

• RANDMMAP modifies this functionality in
do_mmap() by adding a random delta_mmap
value to the base address before searching for
free memory.

PaX RANDEXEC

• Responsible for randomizing the location of
ET_EXEC ELF binaries.
– Image must be mapped at normal address with pages set non-

executable
– Image is copied to random location using RANDMMAP logic.

• Page fault handler will handle accesses to both
binary images and allow access when proper
conditions are met.

NGSEC StackDefender 1.10

• StackDefender implements a unique protection
– Protection based on ACLs surrounding API calls

• StackDefender files:
– kernelNG.fer
– msvcNG.fer
– ntdNG.fer
– Proxydll.dll
– StackDefender.sys

StackDefender.sys

• Hooks ZwCreateFile, ZwOpenFile to detect:
– kernel32.dll
– msvcrt.dll
– ntdll.dll

• Redirect files to:
– *NG.fer

Understanding System Calls

__asm
{

mov eax, 0x64
lea edx, [esp+0x04]
int 0x2e

}

• Gateway between User-mode and Kernel-mode
– KiSystemService
– call KeServiceDescriptorTable->ServiceTableBase[function_id]

Hooking System Calls

__asm
{

cli ; stop interrupts
mov edx, ds:ZwCreateFile ; save function pointer
mov ecx, ds:KeServiceDescriptorTable ; save KeSDT pointer

 mov ecx, [ecx] ; Get base
mov edx, [edx+1] ; Get function number
mov edx, [ecx+edx*4] ; ServiceTableBase
mov old_func, edx ; store old function
mov edx, [edx+1]
mov dword ptr [ecx+edx*4], offset function_overwrite
sti

}

NG.fer Files

• Used by StackDefender to add randomness to
the systems DLL’s image base.

• Makes a copy of system DLLs
– Kernel32.dll
– Ntdll.dll
– Msvcrt.dll

What is the Export Address Table (EAT)?

• Used to export a function for other processes

typedef struct _IMAGE_EXPORT_DIRECTORY {
 DWORD Characteristics;
 DWORD TimeDateStamp;
 WORD MajorVersion;
 WORD MinorVersion;
 DWORD Name;
 DWORD Base;
 DWORD NumberOfFunctions;
 DWORD NumberOfNames;
 DWORD AddressOfFunctions; // RVA from base of image
 DWORD AddressOfNames; // RVA from base of image
 DWORD AddressOfNameOrdinals; // RVA from base of image
} IMAGE_EXPORT_DIRECTORY, *PIMAGE_EXPORT_DIRECTORY;

• To resolve a function export:
– Obtain the Virtual address of the EAT
– Walk AddressOfNames, and AddressOfNameOrdinals
– Index AddressOfFunctions

kernelNG.fer

• Setup KernelNG.fer
– Modify characteristics of the .reloc section

• 42000040 (Readable + Discardable + Initialized Data)
• E2000060 (Executable + Writable + Readable)

– Copy function stubs
– Implement Export Address Table Relocation

• Overwrites function entry point

kernelNG.fer (cont.)

StackDefender overwrites the following function’s EAT
entries:
WinExec

CreateProcessA

CreateProcessW

CreateThread

CreateRemoteThread

GetProcAddress

LoadModule

LoadLibraryExA

LoadLibraryExW

OpenFile

CreateFileA
CreateFileW

_lopen

_lcreat

 CopyFileA
 CopyFileW
 CopyFileExA
 CopyFileExW
 MoveFileA
 MoveFileExW
 MoveFileWithProgressA
 MoveFileWithProgressW
 DeleteFileA
 LockFile
 GetModuleHandleA
 VirtualProtect
 OpenProcess
 GetModuleHandleW

StackDefender Overflow Detection

• .reloc from kernelng.fer loads proxydll.dll

• Proxydll.dll exports StackDefender()
– arg1 = esp+0x0C
– arg2 = where the function was called from
– arg3 = integer
– arg4 = stack address of a parameter

• Proxydll overflow detection
– Alert API Routine

• Checks API for strings e.g. cmd.exe

– Calls VirtualQuery() on arg1 and arg2
• MEMORY_BASIC_INFORMATION->AllocationBase

– IsBadWritePtr() called on arg2

Defeating StackDefender

• Shellcode that puts itself on the heap and
marks the heap read-only

• Shellcode that calls ntdll functions e.g.
ZwProtectVirtualMemory
– Bypasses API hooks

StackDefender 2.00

• Heavily influenced by PaX

• Moved away from API ACL

• Initial Analysis shows:
– Hooks ZwAllocateVirtualMemory and ZwProtectVirtualMemory
– Hooks int 0x0e and int 0x2e

Vulnerabilities in StackDefender

• StackDefender 1.10
– Blue Screen of Death when calling ZwCreateFile / ZwOpenFile

with an invalid ObjectAttribute parameter.

• StackDefender 2.00
– Blue Screen of Death when ZwProtectVirtualMemory is given

an invalid BaseAddress

DataSecuritySoftware OverflowGuard 1.4

• OverflowGuard implements PaX page
protection

• OverflowGuard hooks Interrupt Descriptor Table
entries 0x0e and 0x01.
– 0x01 -> Debug Exception
– 0x0e -> Page Fault

• OverflowGuard Files:
– OverflowGuard.sys

What is the Interrupt Descriptor Table (IDT)?

• Provides array of function pointers as handlers
for userland exceptions or events

• Kernel receives interrupt request and
dispatches the correct handler

• Interrupt or Exception occurs
– int 0x03 - breakpoint
– int 0x0e - invalid memory access

Overwriting IDT

• Use sidt instruction to obtain IDT base

• Load address of interrupt handler
– IDT base addr + interrupt id * 8

• The Interrupt Gate which OverflowGuard needs to
overwrite looks like:

31-16 1
5

14
-

13

12-8 7-5 4-0

Offset P D
P
L

0-D-1-1-0 0-0-
0

Reser
ved

Segment Selector 15-0

Offset

OverflowGuard Buffer Overflow Protection

• OverflowGuard sets memory mappings to read-
only

• Writing stack or heap when its in read-only mode
– Causes page fault

• Updates Permissions

• Page Fault Handler
– OverflowGuard converts old EIP to physical address

• Compares old EIP to fault address
– Then it was an execution attempt
– Otherwise it was a data access

» Find memory address
» Mark it writable/user/dirty
» Perform dummy read
» Reset memory permissions to supervisor

Defeating OverflowGuard

• Return-into-libc previously demonstrated by
ins1der

• Does not protect third party software

Attack Vector Test Platform

Attack Vector Test Platform

• Provides objective test results to determine
gaps in buffer overflow prevention software

• Simulates exploitation of various attack vectors

• Original work by John Wilander

Attack Vector Test Platform Results

Conclusion

• Test results show that there are varying
coverage capabilities in the available
protection software

• Windows protection has not advanced yet
– Few compiler options
– Successful protection of third party applications

• Combination of kernel and compiler-based
protection software is currently the best
defense.

Thanks

Special thanks go out to:

Matt Miller for technical insight and research
verification

Lord YuP for conceptual contributions

We’d also like to thank:

iDEFENSE Labs, Dr Dobbs Journal for lending us articles
to read, Dr. John Wilander for initial Testbed, and
StackDefender Development team for being affable
and helpful throughout the research process.

Questions?

	A Comparison of Buffer Overflow Prevention Implementations and Their Weaknesses
	Agenda
	Compiler-Enforced Protection
	Compiler-Enforced Approach
	Compiler-Enforced Concepts
	StackGuard
	StackShield
	ProPolice SSP
	Slide 9
	Slide 10
	Slide 11
	Microsoft Compiler Extension
	How the /GS Switch Works
	.NET Protection Bypass
	Kernel-Enforced Protection
	Kernel-Enforced Approach
	Kernel-Enforced Concepts
	Memory Management Unit Access Control Lists
	Address Space Layout Randomization
	PaX
	PaX NOEXEC
	PaX PAGEEXEC
	PaX SEGMEXEC
	PaX MPROTECT
	Slide 25
	Slide 26
	PaX ASLR
	PaX RANDUSTACK
	PaX RANDKSTACK
	PaX RANDMMAP
	PaX RANDEXEC
	NGSEC StackDefender 1.10
	StackDefender.sys
	Understanding System Calls
	Hooking System Calls
	NG.fer Files
	What is the Export Address Table (EAT)?
	kernelNG.fer
	kernelNG.fer (cont.)
	StackDefender Overflow Detection
	Defeating StackDefender
	StackDefender 2.00
	Vulnerabilities in StackDefender
	DataSecuritySoftware OverflowGuard 1.4
	What is the Interrupt Descriptor Table (IDT)?
	Overwriting IDT
	OverflowGuard Buffer Overflow Protection
	Defeating OverflowGuard
	Attack Vector Test Platform
	Slide 50
	Attack Vector Test Platform Results
	Conclusion
	Thanks
	Questions?

